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SEEDING CRITERION FOR NONEQUILIBRIUM
MAGNETOHYDRODYNAMIC GENERATORS*

by Frederic A. Lyman andEli Reshotko

Lewis Research Center

SUMMARY 5620

The various consequences of the addition of seed to a carrier gas in a magnetohy-
drodynamic (MHD) generator are examined. In particular, a criterion is established for
determining whether the net effect of seed addition is to augment or decrease the power
density in MHD generator channels that use magnetically induced nonequilibrium ioniza-
tion. The analysis considers the effects of electron-neutral collisions, electron-ion
collisions, ion slip, and variation of the electron energy loss factor with seed fraction
and seed material. Included in the consideration of ion slip are the effects of seed frac-
tion and seed material on ion-neutral collision frequency and on the relative drifts be-
tween seed ions and carrier ions.

The presented criterion is based on the determination of a break-even condition;
namely, that combination of gas density, magnetic field, and induced voltage for which
the power density of the unseeded carrier is neither augmented nor decreased by the
addition of seed. The formulation is given in general terms and is applicable for arbi-
trary combinations of monatomic carrier and seed materials. The criterion may be
separately applied to each successive station of a segmented-electrode Faraday gener-
ator.

Calculations of the break-even condition for various noble carrier gases with alkali
seed have been performed and are presented in graphical form. The results indicate
that ion slip very strongly affects the break-even conditions. Generally speaking, seed-
ing is desirable, and the most beneficial effects are obtained for heavy seed ma.terialsivolQ

INTRODUCTION A’J

One of the key factors in obtaining high power density in magnetohydrodynamic

(MHD) power generators is the achievement of high electric conductivity in the working

'*I‘he principal results of this investigation were reported at the ASME Winter
Annual Meeting, New York City, Nov. 29-Dec. 4, 1964. The present report is a con-
siderably expanded version of material which appeared as ASME Preprint 64-WA/
ENER-10 under the title '*Concerning the Need for Seeding in Nonequilibrium Magneto-
hydrodynamic Generator Channels. '



fluid. In closed-cycle electric-power systems where seeded combustion plasmas are
inapplicable, this problem is particularly severe because, at the highest working fluid
temperatures currently contemplated for nuclear reactors or heat exchangers, the equi-
librium electric conductivity of even a seeded gas is far below that required for a rea-
sonable power density. A nonequilibrium means of obtaining high electric conductivity
is accordingly of great interest.

The contemporary studies of nonequilibrium conductivity began with that of Kerre-
brock (ref. 1). He considered the case of direct current gas discharges and showed that
the electron temperature, at which the energy received by electrons from the electric
field is balanced by that lost in collisions, can be considerably above the bulk gas tem-
perature. He has in fact demonstrated the results to be well represented by a theory
that assumes the ionization and recombination processes to be in equilibrium at the elec-
tron temperature so that the electron population is that corresponding to equilibrium at
the electron temperature, The validity of Kerrebrock's hypothesis has been established
for a cesium plasma by Ben Daniel and Tamor (ref. 2).

Hurwitz, Sutton, and Tamor (ref. 3) noted that the electron heating effect might also
be obtained using the induced electric fields present in MHD generator channels. In
their paper, as in Kerrebrock®s analysis, the electron temperature was determined by
balancing the energy gained by the electrons from the induced electric field with the en-
ergy lost by them in elastic collisions with the neutral atoms. They assumed that at the
low degrees of ionization attained in generators, the electron-ion collisions would occur
infrequently enough to be considered negligible.

Reference 4 showed, however, that at the elevated electron temperatures resulting
from electron heating, a degree of ionization might be attained where the dominant proc-
ess for momentum and energy exchange is electron-ion collisions. This was found to be
particularly the case in noble gases displaying the Ramsauer effect. The addition of
easily ionizable seed to a carrier gas has the two effects of (a) increasing the electron
density of the working fluid and (b) increasing the electron energy losses through colli-
sion with seed atoms and ions, thus limiting the electron temperature. The first effect
tends to augment the electric conductivity, while the second tends to decrease it. It was
shown in reference 4 that in many ¢ases for argon carrier gas with cesium seed the sec-
ond effect was predominant, causing an overall reduction in electric conductivity. In
fact, it was recommended in reference 4 that argon be used without seed as the working
fluid in an MHD generator. This result is, however, sensitive to the values of the per-
tinent collision cross sections. The correct calculation of the electrical conductivity
depends on the average rate of momentum transfer in collisions, which in turn requires
the averaging of the momentum transfer rate over the velocity distributions of the col-
liding particles. In the previous investigations (refs. 1, 3, and 4), a value of the mono-
energetic cross section corresponding to the average electron energy was chosen, which




is tantamount to ignoring the distribution of electron velocities. Furthermore, the prior
investigations did not quantitatively consider the effect of the presence of both seed and
carrier gas ions on ion slip,

It is the purpose of the present report to examine in an orderly manner the various
consequences of the addition of seed to a carrier gas, including the aforementioned
effects, and to establish a criterion to determine whether seed addition augments or de-
creases the power density. The formulated criterion may be separately applied to each
successive station of a segmented electrode Faraday generator. The formulation is
given in general terms and may be used for arbitrary combinations of monatomic carrier
and seed materials.

ANALYSIS

The criterion mentioned in the INTRODUCTION will now be obtained. The basic
idea is to determine the condition for which the addition of a vanishingly small amount of
seed either increases or does not change the power density (power generated per unit
volume). The condition for which the power density is unchanged by the addition of seed
will be called the break-even point.

Basic Equations

In reference 4, Ohm's law and the electron energy equation are derived, including
the effect of ion slip, for a slightly ionized gas containing only one type of ion (ions of the
carrier gas). In the present report, it is necessary to include both carrier gas ions
(c*) and seed ions (st). (Symbols are defined in appendix A.) The details of the deriva-
tion are given in appendix B, where it is shown that all the basic equations of reference 4
still apply, provided that the definition of the ion-neutral collision frequency Via is
appropriately modified (see eq. (B19)).

The energy balance equation for the electrons is (ref. 4)

2
2_,e7ké 2
J°=3 T (Te—T)Ne (1)

where J is the current density, e is the electron charge, k is the Boltzmann constant,
m, is the mass of an atom of the carrier gas, T, is the electron temperature, T is
the static gas temperature, and N, is the number density of electrons. The factor 6,

which is sometimes called the mean loss factor, is a dimensionless quantity defined for
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elastic collisions as

5____t_______746 (2)

where the subscript t denotes each species of atom or ion that may be present, and Vet
is the average collision frequency for momentum transfer between the electrons and
species t. The collision frequency is written

Vet = Ni(Ve)Qet (3)

where ( Vo) is the average thermal speed of the electrons
gkt \/ 2
(Ve) = LN (4)

and Qet’ the average cross section for momentum transfer, is

3 pw 2
m m Vv
Qe(Ty) S / vZQm(ve)exp -—=8 dv, (t = i,a) (C11)
3\2kT,/ 4, KT,

The quantity Qm(v e) appearing in the integrand of equation (C11) is the momentum
transfer cross section for a monoenergetic beam of electrons of speed Va- Equation
(C11) is the result of averaging the rate of momentum transfer in collisions over the
velocity distributions of both the electrons and the species t of heavy particles (atoms
or ions) in the manner described in appendix C. When the average momentum transfer
cross section is calculated from equation (C11) for any one of the noble gases for some
ranges of Te’ the result is found to be as much as an order of magnitude larger than the
value of Qm at beam energies equal to kTe. The difference between Qec(Te) and
Qm is due to the large variation in Qm with v e for the noble gases displaying the
Ramsauer effect. (If Qm were independent of v & this difference would not be signif-
icant, since in that case Qec(Te) = (4/3)Qm.) Therefore, the use of the monoenergetic
cross section instead of the average cross section, as was done in references 1, 3,

and 4, can lead to significant errors.
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For a segmented-electrode MHD generator, Ohm's law is (ref. 4)

%
J=———uB(1 - K) (5)
1+ ‘Beﬁi

where u is the gas velocity, B is the intensity of the magnetic field (Wb/sq m), and K
is the load parameter, which is the ratio of the actual voltage across the generator elec-
trodes to the open-circuit voltage,

k=2 (6)
uB
The conductivity % is
Nee2
Op = (7
0 m,V,
where
v.= 2 v (8)
e t#e et

is the total collision frequency for electrons. The electron Hall parameter B o is de-~
fined as '

m_v (9)

)
il
| €
(4] Icp
I
®
Pl
@

where e is the electron cyclotron frequency. The parameter Bi is

@ 2¢B

B i
1 v, My

(10)

where Via is the effective ion-neutral collision frequency. The value of Bi is a meas-
ure of the slip of the ions through the neutral gas. The ion slip varies inversely with the
gas density (through Via) and directly with the magnetic field. The expression for v,

is derived in appendix B (see eq. (B19)).
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The power density for the segmented electrode generator is1

2
3e7kd
P=JE= Ne\[ m, (T, - T) KuB (11)

The seed fraction s, defined as

(12)

%l

is the parameter of main interest. The number densities of seed and carrier gases in
the absence of ionization are denoted as N(S) and Ng, respectively, where

o_
No = Ng + NS+ (13)

o_
NO =N, + Nc+ (14)

The degrees of ionization of the seed and carrier gas are

Nc+
X, = 0 (15)
(¢}
Ns+
S

respectively, The condition of charge neutrality is

1This is equivalent to the conventional formula

oqu”B?K(1 - K)
1+ BB

P=

Equation (11) is more convenient for subsequent manipulations.
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N_ =N, = NS+ + Nc+ = (%, + sxS)N‘c’ 17

It is assumed that the various ion and atom populations are in equilibrium with the
free electrons at the electron temperature T,. Then the Saha equations (egs. (4) and (5)
of ref. 4) may be written for the seed as

(xc + sxs)xs 1 ng+ 21rmekTe 3/2 eVs
T, &\ ) ™l a9
- Xg Nc s h kTe
and for the carrier gas as
(xc + st)xc 1 ch+ 27rmekTe 3/2 ch
e : exp - —C (19)
1- X, c ¢ h kTe

where &g and g, are statistical weights for the ground states of the seed and carrier
atoms, respectively, g and g + are statistical weights of the ground states of the
s c

seed and carrier ions, respectively, and Vs and Vc are the first ionization potentials
of the seed and carrier gas, respectively.

Condition for Operation Without Seed

The power density, current, conductivity, electron density, and temperature all
depend on the seed fraction s. Suppose that the generator is operating without seed
with a prescribed load parameter K, magnetic field B, and gas velocity u. The prob-
lem is to determine the direction in which the power density varies when a small amount
of seed is added. For this the sign of dP/ds in the neighborhood of s = 0 must be de-
termined. When dP/ds = 0, the break-even condition will be attained, and this condi-
tion will require a certain relation between the operating parameters.

With the aforementioned assumptions, the electric field E is fixed, and the frac-
tional change in the power density caused by the addition of seed is, from equation (11),

1ap_1a5_ 1 Me 1 1 e 140 (20)

Pds Jds Neds 2Te-T ds 20 ds

From equations (1), (5), and (7), it follows that for fixed K, u, and B




vg(l + BeBi)z(Te - T)d = const (21)

Logarithmic differentiation of equation (21) gives

9 ldve_ﬁﬁ,_l_dvia . 1 dTe.l.ld_G: (22)
1+ BeBi Ve ds €1V, ds T

Since vy, vj,, and 6 are known functions of s and T e(s), equation (22) may be used to
determine dTe/ ds. Then the resulting expression for dT e/ ds can be substituted into

equation (20) to yield an expression for dP/ds. The details of this derivation are given
in appendix D, where it is shown that dP/ds =0 if

T 2eV T T
BB {— +|(1-x )3+ —S+—C )+ —F
T, - T kT, T,-T/ T,-T

€ e

A
w
1

V.. V T 2eV T
e1_ ¢ lon+1+ € - x, |3+ €+ ©
Ve Ve T -T kKT, T_-T

e e’

M\ Vei Xe\ Yei . Vec |3 ch Xe
— 3 l-=) =+ = |2+—-[1-= (2n+1) (23)
Ve 2/ Ve Ve |2 kT, 2

The number n is simply the exponent in a semiempirical relation for the cross section
Qec ~ Tg for scattering of electrons by carrier gas atoms. Typically, n is of the
order 1. The quantity ¥, which is defined in equation (D18), is related to the differ-
ence in mobilities of the two ion species in the carrier gas.

The aforementioned relation (eq. (23)) is derived for the limit of zero seed. It has
been assumed that as s approaches zero, the degree of ionization of the seed ap-

1
PN
I
7|
n o

proaches one; hence, the ionization potential and cross section of the seed do not appear.
From equations (18) and (19), it can be shown that for s =0, x
approximation.

The inequality (23) is an implicit relation between T, Ng, B, and T, which estab-
lishes a range of electron temperatures in which the power density is not increased by
seeding. It is not possible to obtain an explicit relation, because the various terms of

s ~ 1 to a high degree of
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equation (23) are not simple functions of T It is convenient for calculational purposes
to assign N , and T and to calculate Ber which is proportional to B2, For
fixed values of T and T, the limiting magnetic field is then calculated over the allow-
able range of gas densmes NO From curves of B against N " the break-even value
of N0 corresponding to any g1ven magnetic field may be found for prescribed values of
Te and T.

The electron temperature is, of course, not an independent parameter, because it
depends on the rate of Joule heating through equation (1). Thus it is necessary to estab-
lish whether or not any prescribed electron temperature is actually attainable. The cri-
terion for this is the value of the gas velocity u required to produce a given electron
temperature. The required gas velocity is obtained from the relation

m
uB(1 - K) = —2 %}ic (1+6,8)v,yTe - T (24)

which follows from equations (1), (5), and (7). (Note that & = 1 in the limit of zero
seed.) Finally, the break-even condition is conveniently expressed as a family of
curves of uB(1 - K) against N(c’ for various values of B and T. In appendix E, a
sample calculation is given in order to clarify the details of the calculational procedure.

RESULTS AND DISCUSSION

Although the break-even condition (the equality in relation (23)) is utilized in the
manner just described to obtain numerical results, it is of interest to consider the
simpler forms to which it reduces in special cases so that the physical meaning of the
condition may become clearer,

Zero lon Slip

A useful limiting case is that in which ion slip is neglected. Then Bi = 0, and the
right side of relation (23) must also be zero. The break-even condition for zero ion slip
is further simplified for small degrees of ionization. For this case (Xc <<1 and
s = 0), equation (19) may be written '

X = _g_(__']i.e)_ (25)



where

1/2

2gc+ / 21rmekTe 3/4 eVC

8Ty = |— exp (- (26)
c h2

From equations (3), (15), and (17), for x, << 1,

V. . .
= = X (27)

Thus, for x, <<1 and s =0, equation (23) yields the following quadratic equation for

the ratio Vec/Vei:
v v
a<_e_c> + b<£>- c=s0 (28)
Vei Vei

where
T
a=2n+1+ € (29a)
T -T
e
T m eV Q 2eV T
b=2n+1+ € _3+<1__rh£>[§+_c_(2n+li‘_ ecé+ €+ e> (29p)
T,-T s/ |2 kT, i kT, T, -T
m Q 2eV T
c=3r—n—c+—eﬁé+ . © > (29¢)
S Qg kTo Tg-T

Break-even operation of course corresponds to the equality sign in the relation (28).
Since a and c¢ are positive, equation (28) has only one positive root, namely,

<Vec> } b2 + 4ac- Db
1

14

= (30)

ei 2a

im
The corresponding gas density is
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2
<No>h _ |8 Te)Q; (Vec (31)
“Mtim Qec Ve lim

which is the gas density for break-even operation with zero ion slip. At higher gas
densities, v ec/ Vi >( Vec / Vei)lim’ and inequality (28) is not satisfied. Hence, seeding
increases the power density. At gas densities below (Ng)lim, seeding will decrease the
power density. It is not difficult to understand why the ratio of collision frequencies is
the critical parameter for break-even operation without seed. At gas densities larger
than that given by equation (31), electron-atom collisions account for most of the re-
sistivity of the gas. According to equations (3), (7), and (8), the conductivity in that case
is proportional to the degree of ionization. Seeding would then increase the degree of
ionization and therefore improve the conductivity and power. At gas densities lower than
break-even, where Voi is much larger than v ec? the conductivity becomes independent
of the electron density and increases with the electron temperature. In this case, the
addition of seed would lower the electron temperature (cf. eq. (D21)) and consequently
decrease the conductivity and power density more than could be offset by the ionization

of the seed.

Equation (31) sets an upper limit on the gas density, above which the addition of seed
will increase the power density. Strictly speaking, it is an implicit relation for (Ng)um,
inasmuch as the gas density also enters into Q i through the term In A (see egs.

(C19) and (C20)). Equation (31) is used in the following manner to establish the break-
even condition for zero ion slip. The electron and gas temperatures are assigned, a
value for In A between 5 and 10 is assumed, and (Ng)lim is calculated from equa-
tion (31). The value of In A is recomputed with this density, and the calculation is re-
peated a few times until it converges. The corresponding value of uB(1 - K) is then
calculated from equation (24). Appendix E contains a sample calculation.

The results of such a calculation are conveniently represented in a graph of the
voltage uB(1 - K) plotted against the gas density Ng. This form is convenient because
the variation of the gas dynamic properties along a duct can easily be traced. For a
constant velocity generator for which B and K are also constant, the state of the gas
would be represented by a horizontal line, while a constant area generator with constant
B and K would be represented on a log-log plot by a straight line of slope -1, since pu
is constant. In general, K is not constant, and the generator operating curve is not
straight, as will be seen subsequently.

The zero-ion-slip break-even condition for some of the noble gases is shown in fig-
ure 1, where the atomic mass of the seed is assumed to be equal to that of the carrier
gas in order to reduce the number of parameters. For some combinations of gas and
seed such as argon and potassium or xenon and cesium, this is very nearly the case.

11
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Figure 1. - Break-even curves for zero ion slip and equal atomic masses of carrier
gas and seed. Static gas temperature, 5000 K.

When m, =mg,, b =a - ¢ and equation (30) becomes
v
_&¢ =S 3 (32)
Veify, @ Te

since Q oc /Qei is usually of the order 10_3. Equation (32) can also be obtained quite

directly from the right side of equation (23) by setting m, = mg and X, ~ 0. From
equation (32), it is clear that the electron-ion and electron-atom collision frequencies

are of the same order at break-even.

The break-even curves in figure 1 are for all practical purposes straight lines.
There is no obvious reason why this should be so, but it is most likely due to the fact
that the exponential variation of g(T e) in the formula for (Ng)lim (eq. (31)) is much more
significant than the purely algebraic variation of the other terms. To the right of any one
of these lines, NCC) > (Ng) , and the power density is increased by seeding, whereas

lim
12
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Figure 2, - Effect of seeding with material whose atomic mass is greater than that of
carrier gas, Argon; static gas temperature, 50° K,

seeding decreases the power density to the left of the line.

There is no easily discernible pattern in the location of the break-even curves for
different gases. It is evident from equations (31) and (26) that for a given electron tem-
perature (Ng)lim will increase exponentially with decreasing ionization potential and
varies as the inverse square of the cross section Q ec Furthermore, uB(1l - K) is
proportional to Q ec? since in the present case Ve ® l/ec(l +a/c). Therefore the break-
even curve for the gas with the lowest ionization potential should be closest to the lower
right corner of the graph. Unfortunately, for the noble gases a low ionization potential
does not go hand in hand with a low electron scattering cross section. In fact xenon,
which has the lowest ionization potential, has one of the highest cross sections. The
conflicting requirements on the ionization potential and cross section are responsible for
the location of the curves shown in figure 1.

The obvious way to use the curves of figure 1 is to choose a particular gas and the
values of the operating parameters u, B, K, and N‘c) and to decide whether seeding is
required by where the point representing the operating condition falls relative to the

13




break-even curve. If the break-even curve is below the operating point, addition of seed
with atomic mass equal to that of the carrier gas will decrease the power density;
however, the addition of seed with atomic mass different from that of the carrier gas
may move the break-even curve to the other side of the operating point, which indicates
that such seed will increase the power density. Examination of equations (28) to (30)
shows that if the seed atoms are heavier than the carrier gas atoms, then the ratio
(vec/ 1% el)hm (NO) L are decreased and the break-even curve is moved to the left.
This behavior may be accounted for by the behavior of the elastic loss factor 6 defined
by equation (2). If m, > m,, then the addition of seed decreases 6. Figure 2 illus-
strates this effect when argon (atomic weight, 39.944) is seeded with cesium (atomic
weight, 132.91).

Effect of fon Slip

For Bi # 0 the break-even condition is evaluated numerically, as described pre-
viously and in appendix E. It is instructive to consider first the simplest case, where
both the atomic masses and the mobilities of the seed and carrier gas are equal. In this
case, the loss factor § is unchanged by the addition of seed; and the quantity ¥,
representing the difference in ion mobilities, vanishes. The break-even condition
becomes

V.. Vv T 2eV T
3—61——992n+1+ - Xo {3+ C4 °
Ve Vg T, - T kTe Te - T
BeBi= (33)
T 2eV T
c e
+Xe (3 + +
T, - kTe T,-T

When N = (N ) o 28 defined in equation (31), the numerator vanishes and B B =0.
Suppose that for a flxed T, N is continually decreased below (N ) im’ It is clear
from equations (25) and (27) that the degree of ionization will then 1ncrease, as will the
ratio Vei/vec' Therefore, BeBi will increase with decreasing Ng. (The term contain-
ing X, in the denominator is generally of less importance for small X, ) Physically,
the increase in f eBi is due to an increase in ion slip. Because of the lower gas density,
ion-neutral collisions become less frequent, and the mechanism for extracting part of
the mechanical energy from the gas and using it to Joule heat the electrons becomes less
effective. As shown in figure 3, the effective electric field uB(1 - K) required for elec-
tron heating is everywhere above that for BeBi = 0, the difference between the curves
increasing as BeBi increases (see eq. (24)). This difference becomes large enough to

14
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Figure 3. - Effect of ion slip on break-even curve for argon. Static gas temperature,
K; mg = mg; equal ion mobilities.

turn the break-even curve upward at low density. The range of parameters over which
seeding is advantageous is increased, since dP/ds > 0 everywhere below the break-
even curve.

For unequal atomic masses and mobilities of seed and carrier gases, the situation
changes markedly from that of the preceding example, because the variations of the loss
factor & and of the effective ion-neutral collision frequency Via become appreciable,
This can be ascertained from the numerical magnitudes of the second and fourth terms
on the left side of equation (23), since ch/kT e >> 1. Because the general break-even
condition is quite sensitive to the ratios of ion mobilities and atomic masses of the seed
and carrier, as well as to the cross section and ionization potential of the carrier, it is
difficult to draw general conclusions from equation (23). Each combination of seed and
carrier must be considered separately. The results are shown in figures 4 to 9 for a
static gas temperature of 500° K (which is typical of supersonic generators) and for
various magnetic fields. Figure 4, for cesium-seeded argon, and figure 9, for cesium-
seeded helium, are of a different character than figures 5 to 8. The break-even curve

15
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of figure 4 has an upper and a lower branch corresponding to high or low electron tem-
peratures, respectively. In the regions above the upper branch and below the lower
branch, seeding decreases the power density, while between the branches seeding in-
creases the power density. The upper branch is similar to the curve of figure 3 and may
be interpreted physically in the same way. In the region below the lower curve, the
electron temperature is low and collisions of electrons with carrier gas atoms limit the
conductivity. The addition of very small amounts of seed changes the conductivity only
slightly, but because the seed ions are more mobile than ions of the carrier gas, seeding
causes ion slip to increase more rapidly than the conductivity, which causes the factor
00/(1 + Beﬁi) in the power density to decrease. Although seeding is not required in the
region below the lower branch, this region is of little practical significance because of
the low electron temperature and consequently the small degree of ionization and low
power density.

The break-even curves of figures 5 to 8 have also two branches. The upper branch
corresponds to high electron temperatures and low gas densities (this branch is not
shown in figs. 5(c), 6(c), and 7, since it falls outside the range of electric fields and
gas densities of interest). The lower branch, corresponding to higher gas densities and
lower electron temperatures, is below and to the right of the break-even line for zero
ion slip. Instead of crossing the zero ion slip line, as in figures 4 and 9, this lower
branch becomes tangent to it. The different character of the break-even curves of fig-
ures 5 to 8 from those of figures 4 and 9 is due to the variation in the mobilities of
carrier and seed ions among the various combinations of carrier and seed.

Seeding increases the power density in two regions of figures 5 to 8, above the
upper branch, and to the right of the lower branch. In the first region, the effective
electric field uB(1 - K) is generally too high to be attained in practice. The range of gas
densities and field strengths in the second region are of more practical interest.

A typical generator operating curve is indicated by the short dashed curve in fig-
ures 4(b) and 5(b) for argon. The generator operating conditions are taken from one of
the cases that was extensively investigated in reference 5. In that reference the one-
dimensional MHD equations were solved for a constant-area channel, where the nonequi-
librium conductivities of seeded rare gases were calculated on the same basis as they
are herein. The electric field E was taken to be constant in reference 5, as required
by Maxwell’s equation for the assumed one-dimensional situation. Since the gas velocity
varies along the generator duct, for this case it is convenient to define a new constant
load parameter K1 as

Ky =— (34)

19




where Uy is the gas velocity at the entrance section. When this definition is combined
with conservation of mass, pu = P14y the following equation for the operating curve is
obtained: ,

i

P1
uB(1 - K) =u,B 5 K, (39)

The dashed curves shown in figures 4(b) and 5(b) are for an entrance Mach number of
3.0 and an entrance stagnation temperature of 4000° R (22220 K), for which the entrance
gas velocity uy is 1316 meters per second. For a ;nagnetic field strength of 2 webers
per square meter, a stagnation pressure of 1. 64x10" newtons per square meter
(1. 62 atm) yields the optimum power density (ref. 5). The same conditions are assumed
herein, In this case it can be seen that the addition of cesium will increase the power
density except at the very end of the operating line. This conclusion is in agreement
with reference 5, in which the addition of a very small amount of cesium seed
(s = 0.000366) to argon carrier gas was found to yield the optimum total power output.
Figure 5(b) shows that seeding with potassium is detrimental to the power density
throughout the generator. Potassium seed was found to be inferior to cesium in refer-
ence 5, but potassium-seeded argon still produced a higher total power than unseeded
argon., The mobility of ions, however, was calculated on the basis of the polarizability
of the carrier gés atoms in reference 5, Such a calculation gives equal mobilities of
argon and potassium ions in argon, whereas the mobility of argon ions in argon is less
than that of potassium ions in argon because of charge exchange. Inclusion of charge ex-
change in this report accounts for the difference in conclusions regarding seeding of
argon with potassium.

The upper limit on the gas velocity is

Ymax = ¥ chTO (36)

5 k . .
VELOCITIES where Cp = E — is the constant pressure speci-
m
(¢

TABLE I. - MAXIMUM GAS

Gas | Stagnation temperature, Tps %k

fic heat and T0 is the stagnation temperature.

1500 | 2000 | 2500 | 3000 The values of U, o, are useful in interpreting

ax

Maximum gas velocity, m/sec the results and are given in table I. The maxi-
Helium | 3947 | 4558 | 5096 | 5582 mum attamaple electric field and voltage may be
Neon 1758 | 2030 | 2270 | 2486 estimated from these values of Uax and the
Argon 1250 | 1443 | 1613 | 1767 magnitude of the available magnetic field. At the
Xenon 689 | 796 | 890 | 975

present time, a magnetic field of 2 webers per
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Figure 10. - Effect of gas temperature on break-even curves for cesium-seeded argon,
Magnetic field strength, 2 webers per square meter.

square meter (20 000 G) is typical of MHD generators. For this magnetic field and

K = 0.5, the maximum attainable field uB(1 - K) is equal to U ax in magnitude and is
of the order of 103 volts per meter. With a very high magnetic field, say B = 10
webers per square meter (100 000 G), the magnitude of uB(1 - K) may reach 104,

Effect of Static Temperature

In figures 1 to 9 the gas temperature was taken to be 500° K, a typical value for
supersonic generator. The effect of changing the gas temperature from 500° to 1500° K
is shown in figure 10. The break-even curves for zero ion slip are very slightly af-
fected by the gas temperature, However, the character of the curves for B # 0 varies
significantly with gas temperature in the range from 500° to 600° K; and in fact for gas
temperatures of 600° K and higher, the break-even curves for cesium-seeded argon have
the same character as the curves for the other combinations of gas and seed at 500° K
shown in figures 5 to 8. Since there is insignificant variation of the alkali ion mobilities
in the noble gases with temperature, the change in the character of the break-even
curves that accompanies a change in gas temperature is due to the variation of the
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for cesium-seeded argon. Static gas temperature, 500° K.

mobility of the carrier ions with temperature, caused by charge exchange (see the dis-
cussion in appendix E).

Effect of Magnetic Field

Finally, it is interesting to note that the break-even curves for various magnetic
fields fall rather close together when u(l - K) is plotted against N /B as shown in
figure 11 for a constant gas temperature of 500° K. This fact may be used to estimate
roughly the location of the break-even curves for various magnetic fields when the shape
of the curve for one magnetic field is known.

GENERATOR PERFORMANCE WITH UNSEEDED GASES

The purpose of the preceding analysis was to establish the regions of operation of a
generator where the addition of alkali seed to a given noble carrier gas would increase
the power density. A comparison of various combinations of seed and carrier gases re-
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quires the calculation of the power density for each combination at the opefating condi-
tions of interest and for various seed fractions. Since these calculations have been car-
ried out in reference 5, including the variation in properties along the generator channel,
extensive calculations of this nature are unwarranted for the purposes of this report.
However, the magnitude of the power density for zero seed does provide an idea of the
best choice of carrier gas. For assigned values of B, Ng, T & and T, uB(1 - K) is
calculated from equation (24), and the result is substituted in equation (11) to yield the
power density parameter P(1 - K)/K. The electron temperature T e’ B eBi’ and

P(1 - K)/K are plotted as a function of the effective electric field uB(1 - K) in figures
12 to 15 for unseeded argon, neon, xenon, and helium. Note that the scale of uB(1 - K)
in the helium curves (fig. 15) extends one decade higher than the scales for the other
gases. At any specified value of uB(l - K), the power densities for argon equal or ex-
ceed those of the other gases. The single exception is Xxenon, which produces higher
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Figure 17. - Momentum transfer cross sections of noble gases.

of the ratio of their atomic weights, since u = ‘IZcp(T0 - T) and ch cc 1/mc.

Figure 16 discloses that argon produces the highest power at low values of uB(1-K),
but as uB(1 - K) increases, the power production in neon and helium exceeds that of
argon. Although helium yields the highest power densities when uB(1 - K) is greater
than about 4><103 volts per meter, argon and neon appear to be the best for operation
over a wide range of uB(1 - K). The latter are in fact the carrier gases with the lowest
electron elastic scattering cross sections at temperatures of the order of 1 electron
volt. The complete channel calculations of Heighway and Nichols (ref. 5) showed that
with regard to neon and argon carriers, the optimum overall power output for cesium-
seeded argon was 15 percent larger than that for cesium-seeded neon. At the entrance
section of their generator, however, neon-cesium yielded a power density about twice
that for argon-cesium. The overall power output of cesium-seeded helium was found to
be considerably less than that of argon and neon. These results can be understood on
the basis of figure 16, since the power density in neon and helium, although larger at
high values of uB(1 - K), fall off with decreasing uB(l - K) faster than it does in argon.
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In a supersonic, constant-area generator, uB(1 - K) drops off rapidly, as shown by the
operating curve of figure 4(b), because u decreases and K increases, and therefore
argon, which produces the highest power density at low values of uB(1 - K), also pro-
duces the highest overall power output. Although the gas density does not remain strictly
constant through the generator, its variation is not significant, as can be seen from fig-
ure 4(b), and the interpretation of the results of reference 5 by means of the constant
gas density curves of figure 16 should be qualitatively correct. The behavior of the
curves of figure 16 is not surprising in view of the variation of the elastic-scattering
cross sections of the noble gases (fig. 17, p. 26) with decreasing electron temperature.

The vertical lines in figure 16 corresponding to various stagnation temperatures
were drawn under the assumption that B(1 - K) =1 or K= 0.5 for the particular case
shown of B = 2 webers per square meter.

CONCLUDING REMARKS

The consequences of the addition of alkali seed to a noble carrier gas in an MHD
generator have been examined from the point of view of realizing magnetically induced
nonequilibrium ionization. An examination of the physical bases of the results tends to
identify the desirable properties of carrier and seed materials for this optimization of
power density.

The important properties of carrier gases are that (1) they be of low molecular
weight so as to yield large induced electric fields for a given stagnation temperature and
(2) they have low cross sections to elastic scattering of electrons so that the electrons
will tend to higher temperatures, resulting in high electric conductivity. The seed on
the other hand should have (1) low ionization potential so that in low concentrations it is
fully ionized, (2) high molecular weight to minimize electron energy loss, and (3) low
cross sections to elastic scattering of electrons for the reason mentioned previously with
regard to the carrier gas.

For the gas combinations considered herein, neon and argon appear to be the most
suitable carrier gases while cesium is the most suitable seed. For reasonable gererator
operating conditions using these carriers, higher power densities will likely be obtained
with seed rather than in the absence of seed and with cesium seed rather than with any
lighter alkali gas. ‘

It should be pointed out that the present analysis directly answers the question of
whether the power density increases or decreases with the addition of seed only in the
limiting case where the seed fraction approaches zero. The conclusions cannot be ex-
tended to arbitrary seed fractions since the power density does not necessarily vary
monotonically with seed fraction. In fact, the results of reference 5 indicate that for a
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case where the present analysis indicates the desirability of seeding there is an optimum
seed fraction beyond which power density decreases with increase in seed fraction.

Another important restriction of the present analysis is due to the omission of in-
elastic collisions and radiation losses. The analysis of the combined effect of these
processes on nonequilibrium ionization in a seeded plasma is a formidable problem, but
one which is important enough to warrant further study.

Lewis Research Center,

National Aeronautics and Space Administration,
Cleveland, Ohio, January 12, 1965.
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APPENDIX A

SYMBOLS

Mks units are used except where explicitly noted otherwise.

atomic weight

defined by eq. (29a)
magnetic field strength
defined by eq. (29Db)

impact parameter for 90°
coulomb scattering

defined by eqs. (B15)
defined by eq. (29c)
defined by eq. (D22)
Debye length, eq. (C14)
electric field

electron charge, -
1.602x10"19 ¢

ground state degeneracy
defined by eq. (26)
Planck constant,

6.625x1073% J_gec
current density

load parameter defined
by eq. (6)
defined by eq. (C3)

Boltzmann constant,
1. 380x10"23 7 °K

mass of particle of rth

species
reduced mass of particles
r and t

Nr

3

rt

number of particles or
rth species per unit
volume

sum of number densities

of ions and atoms of
species r

defined by eq. (31)

standard gas density,
2. 69><1019 atoms/cu cm

exponent in eq. (D11)
power density

total cross section for
scattering of mono-
energetic beam,
eq. (C25)

momentum transfer cross
section for scattering
of monoenergetic beam
defined by eq. (C6)

collision cross section
for momentum transfer
from species r to
species t averaged
over Maxwell distribu-
tion, eq. (C10)

defined by eq. (D13)

seed fraction defined by
eq. (12)
static gas temperature
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30

temperature of rth species

gas velocity

ionization potential of rth

species

relative speed of particles

velocity of particle of rth

species

difference in ion drift velocities
defined by eq. (19)

mean ion drift velocity defined
by eq. (B8)

th

drift velocity of r*" species

degree of ionization of carrier
gas defined by eq. (15)

degree of ionization of seed de-
fined by eq. (16)

cross section for momentum
transfer from species r to
species t averaged over
Maxwell distribution defined
by eq. (C5)

mean thermal speed, eq. (C4)

electron Hall parameter defined
by eq. (9)

ion slip parameter defined by
eq. (10)

mean elastic energy loss factor
defined by eq. (2)

defined by eq. (B31)

permittivity of free space,
8.854x10" 12 F/m

A ratio of Debye radius to impact
parameter for 90° scattering
defined by eq. (C16), eq. (C19)

p defined by eq. (B20)

" ion mobility

ko ion mobility at 300° K and gas
density of 2. 69x101°
atoms/cu cm

Ve total electron collision frequency,
eq. (8)

Via effective ion-atom collision fre-
quency defined by eq. (B19)

Vit mean collision frequency for
momentum transfer from
species r to species t

p gas density

9 electrical conductivity

X scattering angle in center of
mass coordinates

defined by eq. (D18)

Q scattering solid angle

wg electron cyclotron frequency

Subscripts:

a atom

c carrier gas atom

ct carrier gas ion

e electron

i ion

max maximum

min minimum



S

S

4

rth species
(r=e i, a ¢c, ¢
seed atom

seed ion

+

+
» 8, 8)

tth species

(t=e’ i, a, C, C+, 5, S+)

stagnation conditions

conditions at generator entrance
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APPENDIX B

CALCULATION OF ION SLIP FOR TWO ION SPECIES

The drift motion of a species r of charged particles in crossed electric and magne-
tic fields is described by the momentum equation (ref. 4)

e (E*+ W, xB) =) m v (W -¥%) (r=e, s, cfy t=e, s*, c*, 5,00  (BY)
t
where
E*=E+uxB (B2)

is the effective electric field measured in a coordinate system moving with the mean gas
velocity w, and m. is the reduced mass of particles r and t, defined as

m_m
rt

m —_— (B3)
rt
m, + my

+ +

When written out in full for the electrons e, carrier gas ions c¢ ,

equation (B1) becomes

, and seed ions s

. — - —t - _ —r — — -.* —r -
e: mevec+éave wc+> + meyes+<we ws+> + me(uec + Ves)we e(E* + Wy X B) (B4)

€ Mgloye(Wes = We) + (MopeVope + MosglosgWer

+m v w o, -W =e(-E.*+\'x7 Xﬁ) (B5)
et c+S+< ot s+> ot

st mey (W, - W) + (ms+cvs+c T M Ve Wy

Wl s+

w o, -W =e(E*+\'{7 X B) (B6)
s'c sc< + c+> N

S
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As in reference 4, the atom drift velocities are neglected, an assumption that is valid
for small degrees of ionization.

In reference 4, the drift motion of a single ion species for an unseeded plasma in
crossed electric and magnetic fields was described by the momentum equation

m
mg Vie(Wj - We) + Y vigwi = e(E + wj X B) (B7)

The aim here is to derive a similar equation for the combined drift motion of the two ion
species in the seeded plasma. To accomplish this, it is convenient to define a mean ion
drift velocity as

N +-“” + + N .ﬁv’ +
\-V.l = C c S S (B8)
No+ + Ny

The difference in ion drift velocities
WS Wb - Wt (B9)

is also a convenient quantity.

The following equation is obtained by multiplying equation (B5) by N ot €qua-
tion (B6) by Ng 4, adding and making use of the definitions of Gv'i and iv'd (eqs. (B8)
and (B9), respectively):

mevje(Wj - We) + -——c——(m+v+ M Vo) + T (M Vs
€r1elm1 cteVete cts’cts stc’ste
N.+ + Ny N.+ + Ns.,_
m )iv7+—————NC+NS+ [(m V. +m v )
* MgtgVstg!| Vi cte’cte cts’cts
sts sTs (Nc++Ns+)2
— _ -‘* —- =
- (ms+ch+c + ms+svs+s):l Wy = e(E™ +w; X B) (B10)

In reducing the first term of equation (B10) to this form, use was made of the fact that

=y, (B11)
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since the ion-electron collision frequency involves only the electron number density and
electron temperature and not the properties of the individual ions (provided all the ions
are singly charged). Also, ion-ion collisions cancel out because of conservation of
momentum in collisions.

An equation for the difference velocity W d is formed by subtracting equat1on (B6)
from equation (B5). The resulting equation becomes

Ng+
(Mg tVorgs + MgretVgre+ + Mglie) + N.+N . (Mg p Ve + MgrgVsr)
c+ S+
+ N—F (mc_,_cvc_,_c +m, v C+S) Wd ewq X B
ct st
= - - W, B12
[ MeteVete + mc+svc+s) (ms+cvs+c t ms+sys+s):| Wi ( )
If

MoteVete T MetgVotg = Mgtclgre T MgtgVgts (B13)

then the ions drift with the same velocity. Since v rt is proportional to Nt’ équa-
tion (B13) can be satisfied for arbitrary seed and carrier gas densities only if the col-

lision coefficients for each ion species with the seed and carrier gas atoms are the same,
that is, only if

Met+elete T Mg+elgte (Bl4a)
Me+sVcts = MgtsVsts (B14b)

Unfortunately, conditions (B14) are generally not satisfied. Therefore, it is neces-
sary to solve equation (B12) for \'v'd in terms of x_v'i and substitute the result in equa-
tion (B10). The following abbreviations are introduced;:

Cy = MetcVote + Metglots (B152)

Co=m +m (B15b)

stcVs+e stsVs+s
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Cqo=m +m .
3 ctstVetst stetVstet + Melie (Bl5c)

N.;Cy,+N_,C
Cy=Cy+——2 771 (B15d)
NC++NS+

When compared to the other terms in equation (B15¢), m eie is of the order (me/mi)
and therefore may be neglected. Then equation (B12) may be rewritten as

= c,-C
1+8 5, - L _25 (B16)
C4 d C4 i

which may be easily solved by premultiplying both sides by the operator

1 -8By
Cq

and using the fact that w q is perpendicular to B. Then

c,-C
Wy = - 2<Wi+_C;WiXB> (B17)

c
L)
Cq

If equation (B17) is substituted into equation (B10), the resulting equation can be

written in a form quite similar to that of equation (B7), namely,

m

— —r —c
m_v; (wi-we)+ 5 vy

- _ ’* - -
eVie w;=e [E + (1 +)w; X B] (B18)

a

where now the effective ion-neutral collision frequency is defined as

2
9 X sx SX_X (Clv' C2) 1
v = | €+ ——— Cy - ——— - ' S| (B
m,|x. + sX X, + 8X ‘ ;
c|%c s (¢ s (=, + sxs) 4 14+ eB
Cq

and
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: 2
SXsXe (cl - CZ) 1
2 2 2
(xc + sxs) Cy 14 eB
Cq

it

A (B20)

The collision frequency for electrons with any single ion species AY in a mixture of
singly charged ions is

VeAt ™ NA"'Qei( Ve) (B21)
where the electron-ion collision cross section Qei is determined by the coulomb inter-
action between electron and ion and is therefore the same for all singly charged ions

(see appendix C for the exact expression), In the present case, the total electron-ion
collision frequency is '

Vei = Vect ¥ Veg+ = NiQeil Ve) (B22)
where

N; = N4 + Ny (B23)

If the total electron-atom collision frequency is written

V.=V, +V (B24)

and use is made of the definition of \-av'i (eq. (B8)) and equations (B22) and (B23), equa-
tion (B4) may be written in the form

— — —r — _ -’*. — =
mevei(we -wW)+my_ _W_ = e(E_ + W, X B) (B25)

which is identical to equation (36) of reference 4.
Ohm's law and the expression for the electron heating rate are obtained from equa-
tions (B18) and (B25). The total current

J = Nee(wi - W) (B26)

and the electron current
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Jg = - Noew, (B27)

are introduced into equations (B25) and (B18), which become

-mved - My J, = —Nee E” +eJ XB _ (B28)
m, P ‘
m.v, J+-2—u @ - J) NeE*+e(1+A)(J J)XB o (B29)

Addition of equations (B28) and (B29) and solution of the resulting equation for J, by
the same device as employed in the solution of equation (B16) yield

:fe = 1 {[1 +e +A(1+ A)Biz]-j + Bi[l +e(l+ )\)] B x_j} (B30)
(1+ e)2 + Azﬁiz B
where
m_ v
e=9_S_€2 (B31)
¢ Via
and
Bi - 2eB_ (10)
MVia

Equation (B30) is substituted into equation (B28), which may then be put in the following
form:

ooia'* = 1 <{v [(1 +e)? + AZBZ] [1 +€ + A1+ A)BZ]
14

(1+e) +AB e

—

+B B, [1 +e(l+ )\)]}3 - Be{l +e + (1 + A)Biz - € [1 +e(l+ A)]}—g xJ (B32)

where % is the conductivity

317



0'0 = (7)

(9)

The electron heating rate Ee - g* is, from equations (B30) and (B32)

2

VvV .
fe' Ex=d 1 5 l:l+e +A(1+A)Biz]{__e_1[(1+e)2+>\2312]
% [(@+e)?+ 2%67] | Ve
Vea 9 2
+— [1 +€ + (1 + A)Bi]} + BePie [1 +e(l+ )\)] (B33)
v
e

Since ¢ and Biz are both much smaller than 1, and X for small seed fractions
(s < 0.1)is of order 1 or less, terms of order €, €2, and /\2612 can be neglected in
equations (B32) and (B33). Thus, the simplified equations are

OOE* = (1 +‘Beﬁl)‘—f_ 'Be

W 1w

X7 (B34)

[\

(B35)

L]

B4

¥*

1l
Q |°—c
=)

which are formally identical to equations (49) and (51) of reference 4. The only modifi-
cation is that v, is defined differently now (eq. (B19)). In the limit of zero seed, v,

a
reduces to v ct+er 38 it should,
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APPENDIX C

MOMENTUM TRANSFER CROSS SECTIONS AND COLLISION FREQUENCIES

The collision frequencies Vet used in this report refer to the average rate of
momentum transfer from species r to species t per particle of species r. The
average rate of momentum transfer from species r is

o
mv —E‘ asv (CY)
coll

where (ﬁfr/ﬁt) coll denotes the rate of change of the distribution function fr due to col-
lisions. Burgers (refs. 6 and 7) has obtained an explicit expression for (C1) by assum-
ing that the distribution function is close to Maxwellian. In the first approximation, he

obtains
Gfr ' 3
MpVe \ e d%vy = - Z KWy - W) (C2)
ot
coll t )

where w';v’r and w, are the drift velocities. The friction coefficient K, is defined as

t

(11)

_ 2 \
K= 3 . N Ny @Z, (C3)
where m rt is the reduced mass
mrmt
my=——— (B3)
4 m, +m,

« is a mean thermal speed2

2As noted in reference 4, Burgers' results apply to only the case T =T, =T, but
equation (C4) represents the proper generalization of Burgers' work to the case of dif-
ferent temperatures.
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1/2

oo 2kT, . 2KT; (4
my my
and ZSI) is an averaged cross section for momentum transfer, defined as
® 2
Zﬁl) = ;1—/42? stm(v)exp<—Z—2>dv (C5)

0

where v= |V, -7V,| is the relative speed.

The quantity Qm (which Burgers denotes S&.P) appearing in the integrand is the
momentum transfer collision cross section for a beam of particles of velocity v and is
defined as

Q¥ = f0(v,x)(1 - cos x)ag (C6)

where 0(v,y) is the differential cross section for scattering through the angle y and
d? the element of solid angle.
The relation between v, and K, is (refs. 4 and 8)

Krt

rtNr

_2 o (1)
=3 oN,Z & (C?)

More often, the 2/3 factor is absorbed into the cross section, and the average value of
the relative speed, which is

8KT, 8KT, 1/2
{Vy = + (C8)
mm, - Tm,
is used in place of a. Then Vit is written in the conventional definition as
Vet = N VY Qpy (C9)

Clearly,
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Q. =T 0D

rt 3 rt (C10)

For collisions between electrons and atoms or ions, the relative speed v is very
nearly equal to v, and o =~ (2kT e/m e)l/ 2; hence equations (C10) and (C5) may be re-
duced to )

o0

m 3 . m 2
Q (T ) =2{—¢ vQ_ (v )exp |- e'e V4 (t = 1,a) (C11)
et*"e 3\2kT erm' e 9K T e ’
e e
0

The well-known Rutherford cross section

2

2

o(ve,x)=§<4‘;> 21 " 14 (C12)
o/ mov: gin? X

e e

is used to calculate Qm for collisions of electrons with singly charged ions. When
equation (C12) and the formula dQ = 27 sin y dy are substituted into equation (C6) and
the integration is performed over all scattering angles from 0 to 7, the result is

e? ’ 1 4
Q  =4n|— In sin X (C13)
m 47e 2 4 2]g
o/ myv,

Due to the long range nature of the coulomb potential, this integral diverges at the lower
limit. Actually, the maximum range of the electrostatic field of an ion is of the order of
the Debye length, which is (ref. 9)

1/2
EokTe

2
Nee

d= (C14)

At distances larger than d, electrons almost completely screen the field of the ion.
Hence it is customary to replace the lower limit in equation (C13) by the minimum scat-
tering angle y min’ which is determined from the relation
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Xmin _
2

tan (C15)

> =

where A is the ratio of the Debye length to the impact parameter bO for 90° scattering
(ref. 9)

>
il

d
— = (C16)
b, 2

Ions also contribute to the screening effect, but as pointed out in reference 10, the time
involved in an encounter between an electron and an ion is much smaller than the period
of oscillation of the ions; hence, there is not enough time for the ions to respond to the
fluctuation in charge caused by the passing electron, and the ions therefore cannot pro-
vide effective screening for electron-ion collisions.

The result of cutting off the integral in Qm at X,in 18 therefore
2 2
e 1 2
Q =21 |— In(A® + 1) (C17)
m ares ) 2y
e e
: 2
or since A" >>1
e2 2 1
~ 4n |(— In A C18
U 4re 2 4 (C18)
, o/ mgv,

On account of the slow variation of In A with Vs it is also customary to replace mevg
in equation (C16) by its average value, 3kTe’ so that A becomes

3/2
N 127(e KT,)

(C19)
e3Né/2

42




Integration of the expression (C18) according to equation (C11) yields finally the average
momentum transfer cross section for electron-ion collisions

2

2

Q =2T(e_) 1nd (C20)
€l 3 \4me (kT )2

e

o

The ion-ion cross section for singly charged ions is derived from equations (C5)
and (C10) by using a Rutherford cross section similar to equation (C12), but with m,
replaced by the reduced mass of the ions and v e by the relative speed v of the ions.
The screening due to ions must also be included, since the ion-ion collision time is of
the same order as the ion oscillation period. The correct Debye length df, including the

effect of ion screening, is (ref. 10)

1 _ 1.1 (C21)
a? a? a?
where
eokTi 1/2
di = > > (C22)
Nie ,
The result for the ion-ion cross section is
2
2 2
Q= §<4e > = ; : (C23)
o (KT;)

where A' is the ratio of the Debye length d' to the average impact parameter for 90°
scattering of ions (e2/47reo)/3kTi

127(e okTi)3/ 2 T, >_ 1/2
Ate——mm— {14+ — (C24)
3,,1/2 ( T '

e

The ion temperature is assumed to be equal to the gas temperature T. Since
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T, >> T, the last factor in equation (C24) may be set equal to one. However, A!' << A,
and it is generally incorrect to make the approximation A'>> 1 in equation (C23).

For electron-atom collisions, experimental values of the momentum transfer cross
section Qm were used. The authors of reference 5 have evaluated Qet(T e) numerically
for a number of gases in the range of T e from 100° to 15 000° K. Where experimental
values of Qm were not available, they used the total cross section

Q) = [ o(v,,x)de (C25)

instead. The difference between Q m and Qc for most gases is less than 10 percent
(ref. 11, p. 31). The results for Qec(Te) for the noble gases are summarized in fig-
ure 17 on page 26.

In reference 4, it was assumed that electron-atom collisions could be treated by the
hard-sphere model, in which Qm is independent of Ve In that case, equation (C11)
yields

Qec =5 Um (C26)

A constant value of Qm = 2. 01017 square centimeter was used for argon in refer-
ences 1, 3, and 4. This value was inferred from monoenergetic cross section data
(ref. 11, p. 19), which showed little variation over a range of electron energies below
1 electron volt. From figure 17 it can be seen that this value was far too low. The
average momentum transfer cross section also rises rather rapidly with electron tem-
perature. The necessity of using the properly averaged cross section is apparent.

The momentum transfer frequencies for ion-atom collisions are calculated from
ionic mobility data. The mobility [ of an ion of species r in a gas of species t is
defined as

W, = “rtE (c27)

where ﬁv'r is the drift velocity and E is the electric field. Comparison of equations

(B1) and (C27) shows that the mobility for singly charged ions is related to the average
momentum transfer Vit by the formula

rt
mrtvrt
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Note that Vpt 18 proportional and Kt is inversely proportional to the density Ni. Ex-
perimental mobilities are often referred to the standard gas density NO = 2, 69x1019
atoms per cubic centimeter and the corresponding mobility denoted by u o 2s in refer-
ence 11, so that the mobility p at any other gas density N is

No
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APPENDIX D

DERIVATION OF BREAK-EVEN CONDITION

The derivatives dNe/ds, dve/ds, dvia/ds, and do/ds are required for the evalua-
tion of dT, /ds and dP/ds from equations (20) and (22). Since the former quantities
are functions of the degrees of ionization X, and Xg of the carrier and seed gases, itis
convenient to first calculate dxc/ds and dxs/ds.

Differentiation of equations (18) and (19) with respect to s and solution of the re-
sulting equations for dxc/ds and dx S/ds yield

dx, xc(l - Xc) . 3 ev,
= (X + X~ + ——
ds  x,(1-x,)+ sxs(l - Xg) + X, + SXg 2 kT,

e(V,-V) dT
+sx (1-x) ¢ S € _x (D1)
5 S kT T ds S
e e
dx x (1-x) ev
S - 5 8 . +sxs)<§+—§>
ds xc(l - xc) +sxs(1 - xs) + X, +8X 2 kTe

_x(l—x)E(VC VS) id‘Te-x (D2)
¢ ¢ kT, T, ds 5

Only the limiting forms of these expressions for s = 0 will be used here. It will be as-

sumed that, in the limit of zero seed, the degree of ionization X of the seed approaches

unity. Numerical calculations carried out in the course of the work reported in refer-

ence 4 for s < 0.01 support this assumption over the range of electron temperatures of

interest. In fact, if s is set equal to zero in equations (18) and (19) for x, << 1, the

following expressions are obtained for X, and X!

X, = /F. (D3a)

(¢
xg~—1 (D3b)
/F
C
1+

S
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where FS amd FC are the right sides of equations (18) and (19), respectively. The
ionization potential of the carrier gas is several times larger than that of the seed, so
that F, << F; and since F_ > 1 for the range of electron temperatures of interest
here, x s = 1 to a high degree of approximation.

With the aforementioned assumptions, in the limit of zero seed, equation (D1) re-
duces to

dx 1-x eV dT
(——‘3> -—2Lix g —o) (=2} oy (D4)
s=0 2° %

C
ds KT, /T, \ds /o g

Since dxs/ds appears everywhere multiplied by s, its limiting expression for s =0 is
not required.

From equation (17), for Xg = 1,

1 dNe 1 (] c

— |— —il— 1} = =+ -— + —
No\ds /o9 %.i\ds /o0 2-x,1\2 KT /T, \ds | 4 xc(l—xc)

(D5)
Substitution of equation (D5) into equation (20) yields the expression

l(g__P) _l 2(1 - XC) §+ ch . Te i(dTe> N 2 +l(16_>
P\ds/..o 2| 2-% 2 kT,] T, -T|T,\ds /.4 X.(2-%x,) 06\ds/ 4

C € e

(D6)

The various derivatives in equation (22) will now be calculated. The total electron
collision frequency is written

V.SV, +V, .tV (D7)
where
Veec = NeQecl Ve) = Ng(l " Xc)0Qec(Ve) (D8)

Ves = NgQes( Ve) = N(c)s(1 " X5)Qeg( Vo) (D9)
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)
Vei = Vect ™ Veg+ ™ NiQei< Ve) = Nc(xc + SXS)Qei( Ve) (D10)

The electron-ion cross section Q el is proportional to T;z

, as can be seen from equa-
tion (C20). For the electron-atom cross sections the variation with electron temperature

is expressed by relations of the form

Q. = (const)T} (D11)

in the immediate vicinity of the electron temperature corresponding to zero seed. The
exponent n is taken from the slope of a log-log plot of Qec as a function of Te' The
method of deducing the average momentum transfer cross section Qe c(Te) from experi-
mental data on the momentum transfer cross section Qm(v e) for a monoenergetic beam
of electrons is described in appendix C.

The derivative of Ve with respect to s can be calculated in a straightforward man-
ner using equations (D7) to (D11) and (D4). The slight variation of In A with s can be
neglected. In the limit of zero seed the result becomes

1 dve 1 | Vec 2Xc 3 ch Vei
—|— =={—|2n+1 - —+ + -3
Ve ds s=0 21v 2 - X 2 kTe v

e e

21 -x) eV dT v V.
+ c <§ + c> 1 < e> + 1 < ec + 1 e1> (D12)
2 - X, 2 kTe Te ds 5=0 2 - X, \ Ve Xc Vo

The calculation of dVia/ds is also straightforward. It is convenient to use the ab-
breviation

Mrtlrt

rt Nt

R

il

R, (D13)

where ion-ion and ion-atom collisions are involved, since this quantity is independent of

s. Then the quantities Cj, C2, and C3, which enter into the expression (B19) for Via
become

C,= [(1 - X )R 4o + s(1 - xs)Rc*'s]Ng (D14)
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Cy = [(1 - xRy + 501 - xgRgg|Ng (D15)

Cy=(x, + sxS)RS_,_c+Ng (D16)

Substitution of equations (D14) to (D16) into equation (B19) and differentiation of the re-
sult with respect to s yields in the limit of zero seed

1 <d"ia 1 (dxc> 1 Xe (3 ch) 1 <dTe> 1 1
— == — +— ¥ =- —+— |—| — + +— ¥
Via ds s=0 1-x \ds -0 % 2 - X, 2 kTe Te ds s=0 2 - X, X,

(D17)

where the expression (D4) has been used for (dx /ds) o and the following notation has
been introduced for brevity:

<R5+c )(1 X)Rete + X Rovor (D18)

Ree (1 - % )R, +X Ry

In obtammg equations (D17) and (D18), use was made of the approximation
(eB/C4) << 1. This approx1mat10n is consistent with the assumptions of appendix B

since the quantity (eB/ C4) is of the same order as B
Finally, the derivative d6/ds is calculated from the expression

1 m, m, Ves t Ves+
6=— [Vec + Vet +;1—(Ves + Ves+)] =1+ <; - > — (D19)
s

Ve ]

and the result in the limit s =0 is

m v
1 (@) _ _1_<_£ ) ) ci (020)
6\ds s=0 Xc \Mg Ve
Substitution of equations (D12), (D17), and (D20) into equation (22) yields the follow-
ing equation for (AT e/ds)s=0
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0 c ‘e (¢ s e
m\ v . 2x
BB (1 =)oy (D21)
mg | v 2-xc
where
v T 2x eV \| v T
D=—2|2n+1+ _ZC §+ ¢ +—2 .3 €
Ve e-T - X, kTe Ve Te—T
2(1 - x.) ev \] T 2x ev
" C §+ . C +.BeBi e + [¢} §+ C (D22)
2—xC 2 kTe_ Te—T 2—xc 2 kTe

Substituting equation (D21) into equation (D6) and rearranging yields the result

1 <213> -1 N (D23)
P \ds s=0 xc(2 - xc) D
where the numerator N is defined as

v T 2eV T v_. T
N=-S|on+1+ -Xe {3 - €+ ° -3-2 48 8{——

e"i
Ve T,-T kTe Te-T Ve T -T

+¥ | (1-x) 3+ S+ I €
kT

2eV T m\v.{v X eV
+ X, 3+k S © B QL =P i <-—c>(2n+1)—§+—C
T Te—T mg [ v, | v 2 kTe
X\ V.. ev
-3(1- =) - 881 - 2x) 3,¢ (D24)
2 Ve kTe
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For the cases of interest in this report, the denominator D always turns out to be
positive. Thus the sign of dP/ds is governed by the sign of N. For N =0, seeding
does not improve the power density.
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APPENDIX E

DETAILS OF THE CALCULATION

The break-even condition (eq. (23)) is rewritten as

T 2eV T T
C e (]
B B. € +¥ | (1-x)I3 + + +
T -T ( <) T/ T

el kTe Te- e-T

2eV T m ev \ V_.
+xc<3+ © >+<1———C>(1-2xc)<§+—c &
kTe Te— . mg 2 kTe Ve

v, V T 2eV T
=3 __€Cion+1+ € 'Xc<3+ 4 © >

€

Vo Ve Te—T kTe Te-T

m\ v_. X\v.,., V ev X
- ___c. ﬂ 3<__C>_9i+ic §+_E_<1__c>(2n+1) (El)
mg [ v 2 Ve Vg 2 KT e 2
where the magnetic field B enters only through B eBi’ which for s = 0 becomes

B 2eB
o (o) ) =2
e’e c ctc

The expressions for Vec/V e and v ei/Ve in the limit s = 0 are obtained from equa-
tions (D8) and (D10)

Vec _ (1- xc)Qec (E3)
Ve - xc)Qec + chei
E - xCQei (E4)

Ve (1-%)Qqc +X.Qq

where from equations (C19) and (C20)
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(sq m) (E5)

A=1.55X10" — | — (E6)
Nl 2\ e
i
and the limit of zero seed
N = x,Ng (E7)
The degree of ionization X, of the carrier gas is calculated from equation (19),
which for s =0 becomes
2 . 3/2
Xe 6. 04><1027 Sc+ kTe eve
= exp(- — (E8)
1- X, N° g e kTe

c

When X, << 1, a good approximation to X, is

g(Te) 1 77><1013 Ee+ 12 kTe 3 eVc
X, = 2" 2 ( > exp<' 2k > (£9)
(N())l/ (No>1/ g e Te
c c

Finally, the ingredients will be assembled for the quantity ¥, which was defined in
equation (D18). - The quantities Rs'*‘c and Rc+c for ion-atom collisions are calculated
from data on ion mobilities. From the definition (D13) of R, and equations (C28) and
(C29), it follows that

=& __ ¢ (E10)
“rtNt (lio)rtNo

Tt

where Ny = 2. 69x102° atoms per cubic meter is the standard gas density and (u())r ¢
the corresponding mobility. If Ko is given in square centimeters per volt per second,
as is usually the case,
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R, = 5.96x10"41 1 (E11)

(uo)rt

For collisions between ions of species A* and B+, equations (C9) and (C10) give

1/2
_§_k1_> / (E12)

Vit +=N +Q..
A"B B 11<ﬂmA+B+

if it is assumed that both ion species are at the temperature T of the gas. When equa-
tion (E12) and the expression for Q (eq. (C23)) are substituted into the definition for
the ion-ion collision coefficient R A "'B + (eq. (D13)), the following expression is obtained:

- '2
R, 4+t = 1.38x10" 2" mlf2 oA "+ 1) (E13)
A"B A'B 3/2
(%)
e
where
T 3/2
A= [— A (E14)
Te
Then ¥ may be written
(ko)
0c+c_1 1+r (E15)
(MO)S"'C (“'0)0"'0 oy
(Ho)s+c
where
X R +nt A A X 12
L= 1 _c Rs A 945(“0)C+C‘J c’s ¢ In(A 3+21) (E16)
Xe Fete Ac +hAg 1-%, <§‘>/
e

and Ac and AS are the atomic weights of carrier gas and seed, respectively. The
units of (LLO)c +c are square centimeters per volt per second in equation (E16). Note
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TABLE II.

- PROPERTIES OF NOBLE GASES

Gas Atomic |Ionization |Ground state | Ion mobility at 300° K and
weight of | potential, | statistical | gas density of 2. 69x101°
carrier Ve, weight of atoms per cubic centi-
gas, eV carrier gas - | meter (refs. 12 and 14),
Ac Atom, | Ion, o
sq cm/(V)(sec)
c
Helium 4,003 | 24.580 1 2 10.8
Neon 20.183 21.559 1 6 4,2
Argon 39.944 15,755 1 6 1. 60
Krypton 83.80 13. 996 1 6 .90
Xenon 131.30 12,127 1 6 .58

TABLE OI. - ATOMIC WEIGHTS AND MOBILITIES
OF ALKAII SEED IONS IN NOBLE GASES

[Mobility data taken from table 9-2-2 of ref. 12.]

Seed Atomic Background gas
weight Helium} Neon l Argon lKrypton l Xenon
of
seeq. |[on mobility at 290° K and gas density of
A " | 2.69x101? atoms per cubic centimeter,
s Kos
sq cm/(V)(sec)
Lithium 6.94 | 24.4 | 11.1| 4.7 3.7 2.8
Sodium 22,991 22.8 8.2 3.0 2.2 1.7
Potassium | 39.100f 21.6 7.6 2.6 1.9 1.4
Rubidium | 85.48 | 20.2 6.8 2.2 1.5 1.0
Cesium 132.91 18.5 6.1 2.1 1.3 .91

that ¥ vanishes when the mobilities of the seed and carrier gas ions are equal.

With the previous expressions it is a simple matter to calculate B B from equa-
tion (E1) for prescribed values of T T, and No Then the correspondmg value of B
is calculated from equation (E2), whlch upon msertlon of the expression for v
terms of . cte (eq. (C28)) and the relation between p
(uo)c o (eq. (C29)) becomes

in
cte

cte and the standard mobility

(1-x NoveBeBI
()

B2 = 2. 12x10733 (E17)

cte
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1/2
5 kTe o]
Vg = 6. 69x10 {— [(1 - xc)Qec + chei]Nc (E18)

e

The gas velocity required to attain the prescribed electron temperature is calculated

from equation (24), which may be written

8.98x10~10

T (1+ Befre(T, - T)1/2 (E19)
AC

uB(1 - K) =

The pertinent properties of the rare gases are summarized in table II. Table III
gives the atomic weights and mobilities of the alkali seed ions in the noble gases. The
mobilities of the alkali ions in the noble gases are well predicted by classical collision
theory in which the interaction of the ion and atom is assumed to be a polarization attrac-
tion (ref. 12). In this case the theoretical mobility is independent of gas temperature, as
will be assumed here. The available experimental data (ref. 13) indicate that this is a
reasonably good assumption. The mobility of the noble gas ions in their parent gases,
however, decreases slowly with increasing temperature because of the effect of charge
exchange (ref. 14). The following theoretical expressions for the temperature depen-
dence are given in reference 14 and are in good agreement with experiment:

1 (Hetin He) = 2.96x1073 T1/2 4 3, 11x102 + 2. 11x10-2 71 + 6.66 T-2 (E20a)
o

L (Ne+in Ne) = 8.69x1073 T1/2 1 9. 16x10°2 + 0.20 T-} +59.7T°2  (E20D)
#o

L (ArtinAr)=2.08x10°2T1/2 4 0,24 + 1.33 T 14 1.43x102 T2 (E20¢)
o

These expressions, which are claimed to be valid for 50° to 1200° K, are used in the
calculations. Unfortunately, no expression for the temperature dependence of xenon was
given. For xenon the same temperature dependence as for argon is assumed (eq.
(E20c)), but with the constant 0. 24 replaced by 1. 36 in order to give the correct value of
Ko at300°K.

To illustrate the procedure, a sample calculation for argon seeded with cesium
(atomic weight = 132.91) is given. An electron temperature T, = 8000° K (0. 689 ev)

56




and a gas temperature of T = 500° K are chosen. First the break-even point for zero
ion slip is determined from equation (31). From equation (E9)

13 3/4 15,755 9
o(T ) = 7. 17x1013 /6 (0. 689)3 4exp |- L2722 | _ 1. 57x10
e 6 ) 2(0. 689)

Let In A =17.0 as a first approximation. Then from equation (E5)

- 18)

_(4.34x10"1%)7. 0

oi = 5 = 6.40x10 " 17 (sq m)
(0. 689)

Q

The electron-atom cross section for argon at this temperature is Qec = 4, 25x10~ 20

square meter, so that Qec/Q oi = 0. 664x10~ 3. The coefficients of equation (28) are
a=4.33, b=16.06, ¢c = 0.935 (for n = 1.13), and from equation (30)

(Vec/ el)11 = 0.0582. The limiting gas density is from equation (31)

(N°) =1.89 5><1022m 3, and for this gas density equation (E6) gives In A = 6.40. The
calculatlon is repeated with this new value of In A. The ratio (v ec/V e1) is essen-
tially unchanged, while the new value of NO is 1, 582><1022 for which ln A 6. 44.
Another iteration gives (Ng)lim = 1. 6())(1022 and ln A = 6. 45, and further iterations are
not required.

The value of (No) determines the point where 13 B = 0. For other gas den-
sities, B f3 is ca.lculated from equation (E1). For NO < (No)l both sides of equa-
tion (E 1) are positive. For N0 > (Nc')1 the right s1de of equatmn (E1) is negative,
but as the gas density is 1ncreased the coefficient of the left side changes from positive
to negative. In the present example, this occurs at N0 4. 69><1022 per cubic meter,
Since B B must be positive, for the range of densmes 1. 6><10 < N0 <4 69x1()22 the
break- even condition cannot be satisfied; hence seed increases the power For
No > 4. GQXI022 the coefficient on the left side of equation (E1) is negative, and a posi-
t1ve value of B B may be found that satisfies the equality. Figure 18(a) shows the
variation of B B with N0

The sign of dP/ds m regions off the break-even curve is determined from equa-
tion (23) as follows. If both the right and left sides of equation (23) are positive and if
B eBi is smaller than its break-even value (determined from eq. (E1)), then inequality
(23) is satisfied and dP/ds < 0. U B eBi is larger than its break-even value, the in-
equality cannot be satisfied and dP/ds > 0. Therefore, in figure 18(a) dP/ds is positive
above the left branch of the break-even curve and negative below the curve. When both
the left and right sides of equation (23) are negative, as in the present example for
NO > 4. 69x10%%, then for BB, < (B,B; D ronk_ayen € inequality is not satisfied and
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Figure 18. - Results of sample calculation for cesium-seeded argon. Electron temperature, 8000° K; gas temperature, 500° K.

dP/ds > 0. In the region 1.6x10%% < NO < 4. 69x10%%, dP/ds > 0, as mentioned pre-
viously.

Once BeBi has been calculated for assigned values of N(C), Te’ and T, the cor-
responding values of the magnetic field B and the effective electric field uB(1 - K) are
obtained from equations (E17) and (E19), respectively. The results for the example are
shown in figures 18(b) and (c). From figure 18(b) the values of Ng corresponding to a
particular magnetic field may be picked off; for example, for B = 2 webers per square
meter, Ng is 5. 8><1022 and 1. 15><1023 per cubic meter. The values of uB(1 - K) at
these densities are read from figure 18(c) and are 7. 3><102 and 5. 25><102 volts per meter,
respectively. These two points lie on the lower branch of the break-even curve of fig-
ure 4(b). Curves similar to those of figures 18(b) and (c) are constructed for each as-
signed electron temperature, and the densities NCC) and the electric field uB(1 - K) are
read from the curves for a specified magnetic field. The results for cesium-seeded
argon are plotted in figure 4 for various magnetic fields. At high electron temperatures

(above 9000° K), points on the upper branches of the break-even curves of figure 4 are
obtained,
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